Note

On Convex Approximation by Quadratic Splines

Kamen G. Ivanov* and Boyan Popov
Institute of Mathematics, Bulgarian Academy of Sciences, Sofia, Bulgaria
Communicated by Dany Leviatan

Received January 7, 1994; accepted in revised form September 22, 1994

Abstract

In a recent paper by Hu it is proved that for any convex function f there is a C^{1} convex quadratic spline s with n knots that approximates f at the rate of $\omega_{3}\left(f, n^{-1}\right)$. The knots of the spline are basically equally spaced. In this paper we give a simple construction of such a spline with equally spaced knots. © 1996 Academic Press, Inc.

In a recent paper [1] Hu proves that for any convex function f there is a C^{1} convex quadratic spline s with n knots that approximates f at the rate of $\omega_{3}\left(f, n^{-1}\right)$. The knots of the spline constructed in [1] are "basically equally spaced". We give here a simple construction of such a spline with equally spaced knots.

Theorem. Let $f \in C[0,1]$ be convex and let n be natural. There is a C^{1} convex quadratic spline s with knots at i / n, such that

$$
\begin{equation*}
\|f-s\| \leqslant c \omega_{3}\left(f, n^{-1}\right) \tag{1}
\end{equation*}
$$

where c is an absolute constant, $\|\cdot\|$ and ω_{3} are the uniform norm and the third uniform modulus of smoothness in $[0,1]$ respectively.

Proof. Set $h=n^{-1}, m=[n / 3]-1$ and $x_{i}=3 i h$ for $i=0,1, \ldots, m+1$. For $i=1,2, \ldots, m$ let $P_{i}(x)=A_{i} x^{2}+B_{i} x+C_{i}$ be the parabola interpolating f at the points x_{i-1}, x_{i}, x_{i+1}, i.e.,

$$
\begin{equation*}
P_{i}\left(x_{k}\right)=f_{k}:=f\left(x_{k}\right) \quad \text { for } \quad k=i-1, i, i+1 . \tag{2}
\end{equation*}
$$

[^0]From (2) and the convexity of f we have

$$
\begin{equation*}
A_{i}=\frac{1}{18} n^{2}\left(f_{i+1}-2 f_{i}+f_{i-1}\right), \quad A_{i} \geqslant 0 . \tag{3}
\end{equation*}
$$

Set $g(x)=P_{1}(x)$ for $x \in\left[0, x_{1}\right], g(x)=P_{m}(x)$ for $x \in\left[x_{m}, 1\right]$. For $i=2,3, \ldots, m$ set

$$
g(x)=\left\{\begin{array}{lll}
P_{i}(x) & \text { if } & A_{i} \leqslant A_{i-1} ; \tag{4}\\
P_{i-1}(x) & \text { if } & A_{i-1} \leqslant A_{i}
\end{array} \quad \text { for } \quad x \in\left[x_{i-1}, x_{i}\right] .\right.
$$

The function g is a continuous quadratic spline interpolating f at the knots $\left\{x_{i}\right\}$. For the distance between f and g we have from Whitney's theorem [3]

$$
\begin{equation*}
\|f-g\| \leqslant c_{1} \omega_{3}\left(f, n^{-1}\right) \tag{5}
\end{equation*}
$$

An important observation is that g is convex (see Remark 1). The only property, which g lacks to satisfy the theorem, is the discontinuity of g^{\prime} at the knots.

The function $a x_{+}^{2}+b x_{+}$can be smoothed to C^{1} spline with knots -1 , 0,1 by

$$
\begin{equation*}
\sigma(a, b ; x)=a x_{+}^{2}+b x_{+}+\frac{1}{4} b(1-|x|)_{+}^{2} . \tag{6}
\end{equation*}
$$

In order to apply (6) we calculate the differences between the parabolas interpolating f at x_{i}. From (2) we obtain

$$
\begin{align*}
P_{i}(x)-P_{i-1}(x) & =\left(A_{i}-A_{i-1}\right)\left(x-x_{i}\right)\left(x-x_{i-1}\right) \\
& =h^{2}\left(A_{i}-A_{i-1}\right) n\left(x-x_{i}\right)\left(n\left(x-x_{i}\right)+3\right), \tag{7}\\
P_{i+1}(x)-P_{i}(x) & =h^{2}\left(A_{i+1}-A_{i}\right) n\left(x-x_{i}\right)\left(n\left(x-x_{i}\right)-3\right) . \tag{8}
\end{align*}
$$

Adding (7) and (8) we get

$$
\begin{align*}
& P_{i+1}(x)-P_{i-1}(x) \\
& \quad=h^{2}\left(A_{i+1}-A_{i-1}\right) n^{2}\left(x-x_{i}\right)^{2}+3 h^{2}\left(2 A_{i}-A_{i+1}-A_{i-1}\right) n\left(x-x_{i}\right) \tag{9}
\end{align*}
$$

Now we change g on the intervals $\left[x_{i}-h, x_{i}+h\right]$ to a smoother function s in order to get a convex approximant to f. Define $s(x)=g(x)$ for $x \notin \bigcup_{i=1}^{m}\left[x_{i}-h, x_{i}+h\right]$. For every $\left[x_{i}-h, x_{i}+h\right], i=1,2, \ldots, m$, we define s as follows $\left(A_{0}=A_{1}, A_{m+1}=A_{m}\right)$:

Case 1. $A_{i-1} \geqslant A_{i} \leqslant A_{i+1}$. We set $s(x)=P_{i}(x)(=g(x))$.
Case 2. $A_{i-1}<A_{i} \leqslant A_{i+1}$. Then $g=P_{i-1}$ in $\left[x_{i-1}, x_{i}\right]$ and $g=P_{i}$ in [x_{i}, x_{i+1}]. Having in mind (6) and (7) we set

$$
\begin{equation*}
s(x)=P_{i-1}(x)+h^{2} \sigma\left(A_{i}-A_{i-1}, 3 A_{i}-3 A_{i-1} ; n\left(x-x_{i}\right)\right) . \tag{10}
\end{equation*}
$$

From (6) and (10) we get $s(x)-g(x)=\frac{3}{4}\left(A_{i}-A_{i-1}\right) h^{2}\left(1-n\left|x-x_{i}\right|\right)^{2}$ and hence

$$
\begin{align*}
0 & \leqslant s(x)-g(x) \leqslant \frac{3}{4} h^{2}\left(A_{i}-A_{i-1}\right) \\
& =\frac{1}{24}\left(f_{i+1}-3 f_{i}+3 f_{i-1}-f_{i-2}\right) \leqslant \frac{1}{24} \omega_{3}\left(f, 3 n^{-1}\right) \leqslant \frac{9}{8} \omega_{3}\left(f, n^{-1}\right) . \tag{11}
\end{align*}
$$

Case 3. $A_{i-1} \geqslant A_{i}>A_{i+1}$. Having in mind (6) and (8) we set

$$
\begin{equation*}
s(x)=P_{i}(x)+h^{2} \sigma\left(-A_{i}+A_{i+1}, 3 A_{i}-3 A_{i+1} ; n\left(x-x_{i}\right)\right) . \tag{12}
\end{equation*}
$$

From (6) and (12) we get

$$
\begin{equation*}
0 \leqslant s(x)-g(x) \leqslant \frac{3}{4} h^{2}\left(A_{i}-A_{i+1}\right) \leqslant \frac{9}{8} \omega_{3}\left(f, n^{-1}\right) . \tag{13}
\end{equation*}
$$

Case 4. $A_{i-1}<A_{i}>A_{i+1}$. Having in mind (6) and (9) we set

$$
\begin{equation*}
s(x)=P_{i-1}(x)+h^{2} \sigma\left(A_{i+1}-A_{i-1}, 3\left(2 A_{i}-A_{i+1}-A_{i-1}\right) ; n\left(x-x_{i}\right)\right) . \tag{14}
\end{equation*}
$$

From (6) and (14)

$$
\begin{align*}
0 & \leqslant s(x)-g(x) \leqslant \frac{3}{4} h^{2}\left(2 A_{i}-A_{i+1}-A_{i-1}\right) \\
& =\frac{1}{24}\left(-f_{i+2}+4 f_{i+1}-6 f_{i}+4 f_{i-1}-f_{i-2}\right) \leqslant \frac{1}{12} \omega_{3}\left(f, 3 n^{-1}\right) \leqslant \frac{9}{4} \omega_{3}\left(f, n^{-1}\right) \tag{15}
\end{align*}
$$

From (11), (13) and (15) we get

$$
\|s-g\| \leqslant \frac{9}{4} \omega_{3}\left(f, n^{-1}\right),
$$

which together with (5) implies (1).
The convexity of s will follow from the non-negativity of the leading coefficients of its parabolic components. Outside $\bigcup_{i=1}^{m}\left[x_{i}-h, x_{i}+h\right]$ these coefficients are non-negative in view of (3). In $\left[x_{i}-h, x_{i}\right]$ and $\left[x_{i}, x_{i+h}\right], i=1,2, \ldots, m$, the coefficients are (see (6), (10), (12) and (14))

$$
\begin{align*}
& A_{i-1}+\frac{3}{4}\left(A_{i}-A_{i-1}\right) \geqslant 0 \\
& \quad \text { and } A_{i}+\frac{3}{4}\left(A_{i}-A_{i-1}\right) \geqslant 0 \text { in Case } 2 ; \\
& A_{i}+\frac{3}{4}\left(A_{i}-A_{i+1}\right) \geqslant 0 \\
& \quad \text { and } A_{i+1}+\frac{3}{4}\left(A_{i}-A_{i+1}\right) \geqslant 0 \text { in Case } 3 \tag{16}\\
& A_{i-1}+\frac{3}{4}\left(2 A_{i}-A_{i+1}-A_{i-1}\right) \geqslant 0 \\
& \quad \text { and } A_{i+1}+\frac{3}{4}\left(2 A_{i}-A_{i+1}-A_{i-1}\right) \geqslant 0 \text { in Case } 4 ;
\end{align*}
$$

respectively. This completes the proof.

Remark 1. A basic step in the proof is the simple (although non-linear) construction in (4) of the convex continuous quadratic spline g. The convexity follows from the convexity of the parabolic components and the positive jumps of g^{\prime} at x_{i}, which are $3 A_{i}-3 A_{i-1}, 3 A_{i}-3 A_{i+1}$ and $3\left(2 A_{i}-A_{i-1}-A_{i-1}\right)$ in cases 2,3 and 4 respectively.

Remark 2. Hu, Leviatan and Yu show in [2, Theorem 3] that for any convex function f there is a C^{2} convex cubic spline S with $O(n)$ equally spaced knots, such that

$$
\begin{equation*}
\|f-S\| \leqslant c \omega_{3}\left(f, n^{-1}\right), \quad\left\|S^{\prime \prime \prime}\right\| \leqslant c n^{3} \omega_{3}\left(f, n^{-1}\right) \tag{17}
\end{equation*}
$$

One can easily construct such a cubic spline by smooting the spline

$$
\begin{equation*}
s(x)=\alpha+\beta x+\sum_{j=0}^{n-1} \gamma_{j}(x-j h)_{+}^{2} \tag{18}
\end{equation*}
$$

from Theorem 1, where coefficients γ_{j} satisfy (see (16) and (3))

$$
\begin{equation*}
\left|\gamma_{j}\right| \leqslant \frac{5}{2} \max _{i}\left|A_{i}-A_{i-1}\right| \leqslant \frac{15}{4} n^{2} \omega_{3}\left(f, n^{-1}\right) \tag{19}
\end{equation*}
$$

Simply set

$$
S(x)=s(x)+\sum_{j=1}^{n-1}\left(\frac{1}{4 n}\right)^{2}\left|\gamma_{j}\right| \eta\left(4 n(x-j h) \operatorname{sign} \gamma_{j}\right),
$$

$\eta(x)=\theta(x)-x_{+}^{2}, \quad \theta(x):=\frac{1}{9}(x+1)_{+}^{3}+\frac{1}{6} x_{+}^{3}-\frac{1}{3}(x-1)_{+}^{3}+\frac{1}{18}(x-2)_{+}^{3}$.
Note that S is a cubic spline with $4 n$ equally spaced knots, $S^{(k)}(j h-h / 2)=$ $s^{(k)}(j h-h / 2), k=0,1,2, j=1,2, \ldots, n$. (17) follows from (1) and (19). Finally, the convexity of S can be verify as follows. In $x \in[j h, j h+h]$, $j=0,1, \ldots, n-1$, write s as the parabola Q_{j} and note its convexity in view of the convexity of s. From (18) the difference between two consecutive parabolas is $Q_{j}(x)-Q_{j-1}(x)=\gamma_{j}(x-j h)_{+}^{2}$. Then in [$j h-h / 2, j h+h / 2$], $j=1,2, \ldots, n-1$, we have

$$
\begin{array}{ll}
S(x)=Q_{j-1}(x)+\left(\frac{1}{4 n}\right)^{2} \gamma_{j} \theta(4 n(x-j h)) \quad \text { if } \quad \gamma_{j} \geqslant 0 ; \\
S(x)=Q_{j}(x)+\left(\frac{1}{4 n}\right)^{2}\left|\gamma_{j}\right| \theta(-4 n(x-j h)) \quad \text { if } \quad \gamma_{j}<0 .
\end{array}
$$

This representation implies the convexity of S because θ and Q_{j} are convex.

Acknowledgment

The authors thank the referee for his valuable remarks and for pointing out the relevant result in [2].

References

1. Y. K. Hu, Convex approximation by quadratic splines, J. Approx. Theory 74 (1993), 69-82.
2. Y. K. Hu, D. Leviatan and X. M. Yu, Convex polynomial and spline approximation in C [- 1, 1], Constr. Approx. 10 (1994), 31-64.
3. H. Whitney, On functions with bounded nth difference, J. Math. Pure Appl. 36 (1957), 67-95.

[^0]: * Supported by Bulgarian Science Foundation Grant MM-205/1992.

