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In a recent paper by Hu it is proved that for any convex function f there is a
C 1 convex quadratic spline s with n knots that approximates f at the rate of
|3( f, n&1). The knots of the spline are basically equally spaced. In this paper we
give a simple construction of such a spline with equally spaced knots. � 1996

Academic Press, Inc.

In a recent paper [1] Hu proves that for any convex function f there is
a C 1 convex quadratic spline s with n knots that approximates f at the rate
of |3( f, n&1). The knots of the spline constructed in [1] are ``basically
equally spaced''. We give here a simple construction of such a spline with
equally spaced knots.

Theorem. Let f # C[0, 1] be convex and let n be natural. There is a C 1

convex quadratic spline s with knots at i�n, such that

& f &s&�c|3( f, n&1), (1)

where c is an absolute constant, & } & and |3 are the uniform norm and the
third uniform modulus of smoothness in [0, 1] respectively.

Proof. Set h=n&1, m=[n�3]&1 and xi=3ih for i=0, 1, ..., m+1. For
i=1, 2, ..., m let Pi (x)=Ai x2+Bi x+Ci be the parabola interpolating f at
the points xi&1 , xi , xi+1 , i.e.,

Pi (xk)= fk := f (xk) for k=i&1, i, i+1. (2)
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From (2) and the convexity of f we have

Ai=
1
18n2( fi+1&2 fi+ fi&1), Ai�0. (3)

Set g(x)=P1(x) for x # [0, x1], g(x)=Pm(x) for x # [xm , 1]. For
i=2, 3, ..., m set

g(x)={Pi (x)
Pi&1(x)

if Ai�Ai&1 ;
if Ai&1�Ai

for x # [xi&1 , xi]. (4)

The function g is a continuous quadratic spline interpolating f at the knots
[xi]. For the distance between f and g we have from Whitney's theorem [3]

& f &g&�c1 |3( f, n&1). (5)

An important observation is that g is convex (see Remark 1). The only
property, which g lacks to satisfy the theorem, is the discontinuity of g$ at
the knots.

The function ax2
++bx+ can be smoothed to C 1 spline with knots &1,

0, 1 by

_(a, b; x)=ax2
++bx++ 1

4b(1&|x| )2
+ . (6)

In order to apply (6) we calculate the differences between the parabolas
interpolating f at xi . From (2) we obtain

Pi (x)&Pi&1(x)=(Ai&Ai&1)(x&xi)(x&xi&1)

=h2(Ai&Ai&1) n(x&xi)(n(x&xi)+3), (7)

Pi+1(x)&Pi (x)=h2(Ai+1&Ai) n(x&xi)(n(x&xi)&3). (8)

Adding (7) and (8) we get

Pi+1(x)&Pi&1(x)

=h2(Ai+1&Ai&1) n2(x&xi)
2+3h2(2Ai&Ai+1&Ai&1) n(x&xi). (9)

Now we change g on the intervals [xi&h, xi+h] to a smoother
function s in order to get a convex approximant to f. Define s(x)=g(x) for
x � �m

i=1 [xi&h, xi+h]. For every [xi&h, xi+h], i=1, 2, ..., m, we
define s as follows (A0=A1 , Am+1=Am):

Case 1. Ai&1�Ai�Ai+1. We set s(x)=Pi (x)(=g(x)).

Case 2. Ai&1<Ai�Ai+1. Then g=Pi&1 in [xi&1 , xi] and g=Pi in
[xi , xi+1]. Having in mind (6) and (7) we set

s(x)=Pi&1(x)+h2_(Ai&Ai&1 , 3Ai&3Ai&1; n(x&xi)). (10)
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From (6) and (10) we get s(x)&g(x)= 3
4(Ai&Ai&1) h2(1&n |x&xi | )

2 and
hence

0�s(x)&g(x)� 3
4h2(Ai&Ai&1)

= 1
24 ( fi+1&3 fi+3 fi&1& fi&2)� 1

24|3( f, 3n&1)� 9
8 |3( f, n&1). (11)

Case 3. Ai&1�Ai>Ai+1. Having in mind (6) and (8) we set

s(x)=Pi (x)+h2_(&Ai+Ai+1 , 3Ai&3Ai+1; n(x&xi)). (12)

From (6) and (12) we get

0�s(x)&g(x)� 3
4h2(Ai&Ai+1)� 9

8|3( f, n&1). (13)

Case 4. Ai&1<Ai>Ai+1. Having in mind (6) and (9) we set

s(x)=Pi&1(x)+h2_(Ai+1&Ai&1, 3(2Ai&Ai+1&Ai&1); n(x&xi)). (14)

From (6) and (14)

0�s(x)&g(x)� 3
4h2(2Ai&Ai+1&Ai&1)

= 1
24 (& fi+2+4fi+1&6 fi+4 fi&1& fi&2)� 1

12|3( f, 3n&1)� 9
4|3( f, n&1).

(15)

From (11), (13) and (15) we get

&s&g&� 9
4|3( f, n&1),

which together with (5) implies (1).
The convexity of s will follow from the non-negativity of the leading

coefficients of its parabolic components. Outside �m
i=1 [xi&h, xi+h]

these coefficients are non-negative in view of (3). In [xi&h, xi] and
[xi , xi+h], i=1, 2, ..., m, the coefficients are (see (6), (10), (12) and (14))

Ai&1+ 3
4 (Ai&Ai&1)�0

and Ai+
3
4 (Ai&Ai&1)�0 in Case 2;

Ai+
3
4 (Ai&Ai+1)�0

and Ai+1+ 3
4(Ai&Ai+1)�0 in Case 3; (16)

Ai&1+ 3
4 (2Ai&Ai+1&Ai&1)�0

and Ai+1+ 3
4(2Ai&Ai+1&Ai&1)�0 in Case 4;

respectively. This completes the proof. K
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Remark 1. A basic step in the proof is the simple (although non-linear)
construction in (4) of the convex continuous quadratic spline g. The
convexity follows from the convexity of the parabolic components and
the positive jumps of g$ at xi , which are 3Ai&3Ai&1 , 3Ai&3Ai+1 and
3(2Ai&Ai&1&Ai&1) in cases 2, 3 and 4 respectively.

Remark 2. Hu, Leviatan and Yu show in [2, Theorem 3] that for any
convex function f there is a C 2 convex cubic spline S with O(n) equally
spaced knots, such that

& f &S&�c|3( f, n&1), &S$$$&�cn3|3( f, n&1). (17)

One can easily construct such a cubic spline by smooting the spline

s(x)=:+;x+ :
n&1

j=0

#j (x& jh)2
+ (18)

from Theorem 1, where coefficients #j satisfy (see (16) and (3))

|#j |�
5
2 max

i
|Ai&Ai&1|� 15

4 n2|3( f, n&1). (19)

Simply set

S(x)=s(x)+ :
n&1

j=1
\ 1

4n+
2

|#j | '(4n(x& jh) sign #j),

'(x)=%(x)&x2
+ , %(x) :=

1
9

(x+1)3
++

1
6

x3
+&

1
3

(x&1)3
++

1
18

(x&2)3
+.

Note that S is a cubic spline with 4n equally spaced knots, S (k)( jh&h�2)=
s(k)( jh&h�2), k=0, 1, 2, j=1, 2, ..., n. (17) follows from (1) and (19).
Finally, the convexity of S can be verify as follows. In x # [ jh, jh+h],
j=0, 1, ..., n&1, write s as the parabola Qj and note its convexity in view
of the convexity of s. From (18) the difference between two consecutive
parabolas is Qj (x)&Qj&1(x)=#j (x& jh)2

+. Then in [ jh&h�2, jh+h�2],
j=1, 2, ..., n&1, we have

S(x)=Qj&1(x)+\ 1
4n+

2

#j %(4n(x& jh)) if #j�0;

S(x)=Qj (x)+\ 1
4n+

2

|#j | %(&4n(x& jh)) if #j<0.

This representation implies the convexity of S because % and Qj are convex.
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